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Assembled genomes of environmental microbes are informative but difficult to 

obtain due to the resistance of most organisms to cultivation and the diversity of 

microbial communities.  Here we show that information encoded within 

fragmented sequence data alone can be used to characterize distinctive metabolic 

capabilities of microbial communities occupying different environmental niches.  

We sequenced microbial DNA isolated from a phylogenetically complex soil 

sample and three separate deep ocean whale skeletons and compared them to each 

other and to previously generated environmental genomic data.  Confirming the 

complexity that microbial communities can attain, our analysis of 100 million bp 

from soil revealed that at least ten-fold more sequence would be required to 

assemble even the single most predominant community member.  Despite the 

resulting low sequence coverage of individual microbial genomes in the samples, 

protein functions predicted from the fragmented sequence data for each 

environment revealed habitat-specific fingerprints.  Binning of these proteins into 

either gene families, operons or cellular processes produced distinct patterns that 

correlate with the known metabolic demands presented by the different 

environments.  The identification of uncharacterized, environment-specific and -

enriched genes illustrates the unique insights to be gained from gene- versus 

genome-centric comparative analyses of environmental samples. 

 

Despite their importance, relatively little is known about the microbes inhabiting 

most ecosystems on our planet due to their resistance to culture under standard 

laboratory conditions.  An early glimpse into the phylogenetic diversity of these 
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as-yet uncultured organisms has been offered by a variety of 16S ribosomal RNA 

(rRNA)-based sequencing projects (1, 2).  Recently, advances in high-throughput 

sequencing technologies have facilitated efforts to go beyond 16S rRNA 

sequencing to explore the genomic complement of environmental microbes.  

These pursuits, dubbed “metagenomics” or “ecogenomics,” have provided 

valuable insight into the lifestyles and metabolic capabilities of uncultured 

organisms.  They include the sequencing of individual large-insert BAC clones 

and more recently high-throughput sequencing of small insert libraries made 

directly from environmental DNA (3-7).   While the latter - shotgun sequencing of 

environmental samples - can present challenges for genome assembly, this 

approach has the advantage of providing a minimally biased view of the 

community and its entire genetic repertoire absent from 16S rRNA or BAC clone 

sequencing surveys.   

Two studies to date have reconstructed partial genomes from environmental DNA 

using shotgun sequencing.  The first study to report genome assembly from an 

environmental sample focused on an unusually simple community, a biofilm from 

an acidic mine environment (6).  With a relatively modest sequencing effort (~76 

Mb), sufficient genome coverage was obtained to reconstruct near complete or 

partial genomes for five organisms.  The second metagenomic study explored a 

considerably more complex set of microbial communities, found in the open 

waters of the Sargasso Sea (7).  Previous studies had suggested that samples from 

this environment contained on the order of 200 species (8), but extensive 

sequencing (~1.4 Gb total) implied the presence of more than 1000 species in the 
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samples examined.  Near-complete assemblies were possible for the genomes of 

just three of these organisms, and nearly half of the sequences obtained could not 

be assembled beyond mate-pairing of bidirectional reads from individual clones 

(7). 

An important unanswered question arising from these initial forays into shotgun 

sequencing of environmental samples is whether whole genome shotgun sequence 

data can be meaningful in the absence of significant assembly.  Many microbial 

communities, such as those residing in soils and sediments, are substantially more 

complex than those found in the acid mine drainage biofilm or even the Sargasso 

Sea and thus less amenable to genome assembly (6, 7, 9).  This obstacle may in 

part be offset by the high gene density of prokaryotes and improved sequence 

read lengths which result in most reads containing a significant portion of at least 

one gene (10, 11).  While genomic sequencing goals targeting species ranging 

from humans to microbes have almost exclusively focused on determining the 

complete genome of a particular organism, the genetic information contained in 

individual sequencing reads suggests the feasibility of a less whole genome-

oriented approach to the analysis of metagenomic data.  Examination of the 

proteins encoded in a community, rather than the types of organisms producing 

them, could potentially distinguish samples based on the functions selected for by 

the local environment and reveal insights into features of that environment. 

To explore the utility of a gene-centric approach to environmental samples we 

examined a number of communities of varying complexity from environments 

presenting several different metabolic challenges.  One sample was from soil, a 
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nutrient-rich environment harboring microbial communities of high genetic and 

biochemical diversity whose complexity poses a daunting challenge for genomic 

analysis (12, 13).  Three other samples were from microbial communities growing 

on sunken whale skeletons, a lipid-rich nutrient source that can foster the growth 

of a flourishing ecosystem in an otherwise nutrient-poor environment (14).  This 

unique ecological niche, referred to as a “whale fall,” has been suggested to select 

for “specialist” species in geographically remote locations (15).  Bone samples 

from two widely separated communities in the Pacific and Antarctic Oceans were 

examined, as well as a microbial mat sample from the Pacific site.  We explored 

the gene contents of the partially assembled and unassembled reads from soil and 

whale fall samples and used them to compare these communities to each other 

and to those previously studied from the Sargasso sea and an acid mine drainage 

biofilm (6, 7). 

Preliminary analysis of the microbial diversity in the soil and whale fall 

communities was performed with PCR amplified small ribosomal RNA libraries 

generated for each sample using primers specific for the three domains of life 

(Bacteria, Archaea, and Eukaryotes).  In the soil sample, rRNA gene sequences 

revealed the presence of a wide diversity of bacteria but very few archaeal 

species; some fungi and unicellular eukaryotes were also found (Supplemental 

Figure S1).  To obtain a more accurate assessment of the bacterial species in soil 

and their phylogenetic distribution, we sequenced 1700 clones from two 

independent libraries of PCR-amplified bacterial 16S rRNA sequences prepared 

from the soil DNA.  We observed 847 distinct ribotypes among these sequences, 
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distributed among Proteobacteria, Chloroflexi and Acidobacteria as well as 15 

other phyla (Supplemental Figure S1B).  Extrapolations of the accumulation 

curve (Figure 1)(16) predicted the total number of bacterial ribotypes in this 

sample to be more than 3000, consistent with previous estimates of soil 

biodiversity (9).  The most common ribotype accounts for 112 (6.6%) of the 

clones, supporting the conjecture that soil communities typically lack a 

“dominant” member as a consequence of spatial isolation and high nutrient 

availability (Supplemental Figure S1D) (17).  These numbers, based on the 

relatively loose cutoff of 97% or greater sequence identity (18), likely 

underestimate the number of species by an order of magnitude, as even microbes 

with very high similarity in 16S rRNA sequence are known to have quite 

divergent genome content (19, 20). 

The whale fall samples each contained a more limited spectrum of bacteria than 

soil, and those from the Pacific site also contained a handful of archaea and 

eukaryotes (Supplement).  Roughly 85 bacterial 16S clones were sequenced from 

each site, revealing between 17 and 37 unique sequences in each, primarily drawn 

from the Bacteroidetes and Proteobacteria phyla for all three libraries 

(Supplemental Figure S2A).  Only one clone was common to all three libraries, an 

alpha proteobacterium most closely related to an Antarctic lake clone, but the 

closest relatives for virtually all of the sequences were from marine environments 

including hydrothermal vents, a milieu whale falls are thought to mimic in some 

ways (14).  The accumulation curves suggest these communities are both less 

diverse and less evenly distributed than the soil cohort; each is estimated to 
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contain between 25 and 150 distinct ribotypes of which the most abundant 

accounts for 15-25% of the library (21) (Figure 1 and Supplemental Figure S2).  

The reduced species and phyla diversity of the whale fall microbial communities 

as compared to soil is consistent with the extreme and specialized nature of this 

ecological niche. 

Figure 1:  Species complexity.  Accumulation curves of bacterial 16S 

rRNA clone sequences for soil and whale fall samples.  Inset: 

Accumulation curve for all 1700 soil clones.  The three whale falls are: 1, 

Santa Cruz Basin bone; 2, Santa Cruz Basin microbial mat; and 3, 

Antarctic bone.  
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We complemented the ribosomal library sequences with the sequencing of 

genomic small-insert libraries made from the soil and all three whale skeleton 

samples.  In light of the organismal complexity seen in the soil sample, we 

generated 100 Mb of sequence from this sample and 25 Mb for each whale fall 

library.  Partial small ribosomal RNA genes found in these data largely reflected 

the species and phyla found in the PCR clone libraries, demonstrating that the 

PCR clone data present a reasonable picture of the communities being examined 

(Supplement).  Consistent with the predicted high species diversity in the soil 

sample, attempts at sequence assembly were largely unsuccessful.  Less than 1% 

of the nearly 150,000 reads generated from the soil library exhibited overlap with 

reads from independent clones.  Based on either the 16S rRNA data or the 

overlaps in the genomic sequence, we project that somewhere between two and 

five Gbp of sequence would be necessary to obtain the 8X coverage traditionally 

targeted for draft genome assemblies, even for the single most predominant 

genome in this complex community (Supplement).  While the whale fall libraries 

also lacked contigs greater than a few kilobases, 34-47% of the reads in each 

library overlapped with reads from independent clones.  Based on the 16S rRNA 

and genomic assembly data, we estimate that between 100 and 700 Mb of shotgun 

sequence data would be needed from each sample in order to generate a draft 

assembly for the most prevalent genome.  Assembling genomes for low-

abundance community members in either soil or whale falls would clearly require 

significantly more sequence data. 
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Given the significant hurdles to the assembly of complete genomes from these 

samples, we chose to study the environment from the perspective of the genes 

present without attempting to place them in the context of an individual genome.  

While such an analysis does not resolve relationships among different organisms, 

it may, in part, provide some insight into the properties of the community as a 

whole.  We chose to use the spectrum and abundance of genes present in the 

metagenomic data to compare and contrast the communities found in soil and 

each of the three whale falls.  To explore the utility of this “functional 

fingerprinting,” we also extended our comparison to data from both the acid mine 

drainage (AMD) study (6) and three samples taken from different locations in the 

Sargasso Sea with matched prefilter and collection filter sizes (7).   

Since much of the environmental sequence data is in the form of single reads, we 

examined automated annotations for the five genomes assembled from an AMD 

biofilm microbial community (6) and compared them to annotations of the 

complete set of unassembled reads from this sample.  This analysis revealed that 

95% of the functionally categorized predicted genes in these genomes were 

apparent in the unassembled data (Supplement).  With this result supporting the 

validity of gene predictions on unassembled reads, we then applied the annotation 

process to the data from soil, the three whale fall communities, and the three 

Sargasso Sea samples, including all unassembled reads in addition to any 

available contigs.  As our analysis relied primarily on the predicted genes on 

small DNA fragments, we termed each environmental sequence an Environmental 

Gene Tag (EGT), to distinguish them from the sequencing reads primarily used 
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for the assembly of genomes.  At least 90% of the sequence fragments from each 

sample were shown to contain putative genes, an efficiency resulting from the 

gene density of prokaryotes and the >700 bp length of each sequence.  More than 

a third contained two or more predicted ORFs, raising the possibility of nearest-

neighbor analysis.   

All predicted genes were compared to Clusters of Orthologous Groups (COGs) 

(22).  To increase the coverage and include more low-abundance orthologous 

groups that might discriminate among environments, we expanded the COG set 

from 4873 to 20334 by applying the STRING orthology assignment protocol to 

179 completely sequenced genomes (23, 24).  Roughly half the predicted proteins 

in each sample exhibited homology to orthologous groups; the soil proteins 

mapped to 5467 distinct orthologous groups (3394 to the original COGs and 2127 

to additional, automatically derived, non-supervised orthologous groups or 

NOGs), each whale fall library contained representatives of ~3600 groups and 

each Sargasso Sea library contained representatives of ~4800 groups.  The 

predicted AMD proteins, on the other hand, mapped to just 2244 groups, 

consistent with the limited diversity of this community. To test whether the 

orthologous groups from each library were representative of the full range of 

groups in a community, we plotted the number of orthologous groups detected at 

increasing levels of sequencing depth.  For all samples, saturation for frequently 

occurring orthologous groups is observed after a modest amount of sequencing 

while the general slope of the curve reveals information about community 

diversity (Figure 2).  In the relatively simple AMD biofilm community, 90% of 
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the orthologous groups were detected with just 25 Mbp raw sequence (~15 Mbp 

quality sequence) – a fraction of that needed to assemble genomes (Figure 2).  

Even in the considerably more complex soil community, the curve starts to flatten 

at 25 Mbp, suggesting that new orthologous groups detected at this point are 

found only in a minority of the community members.  The whale fall and 

Sargasso Sea communities, consistent with their species complexity, fell between 

acid mine drainage and soil.  We observed qualitatively similar curves when 

limiting the analysis to the original 4873 COGs (Supplemental Figure S3A), 

showing that despite incomplete gene classification one can assess functional 

complexity with fragmented sequence data.  Since the use of orthologous groups 

as a reference has specific biases that may influence our results, we also examined 

the protein repertoire in these sequences utilizing the domain-oriented Pfam 

database and its native search tool, HMMer (25).  The number of Pfam domains 

observed also demonstrated a leveling off with increasing sequence 

(Supplemental Figure S3B).   

Figure 2:  Identification of orthologous groups with greater sequencing 

depth.  The number of new orthologous groups predicted in the sequence 

data from each library is shown as a function of the raw sequence 

generated.  (Raw sequence numbers were used because quality 

information was not available for all samples; for JGI data raw read 

lengths are typically 64% greater than quality base counts determined with 

a Phred score 15 threshold.)  
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What may be more relevant than the total number of different orthologous groups 

in a sample is the relative proportion of the total protein sets devoted to particular 

functions, which could aid in revealing the predominant metabolic interactions of 

these microbes with their environments.  We therefore explored whether 

quantitative variations in the relative distribution of protein sequences among 

communities reflected the specific demands placed on the organisms by their 

local environment.  Our prediction here was that samples from different 

environments would have different profiles, while independent samples from 

similar environments would exhibit similar functional profiles.  The sample 

characterization exploited functional binning at three levels:  i) individual genes 

(orthologous groups), ii) conserved “operons” that usually encode individual 

pathways, and iii) higher order cellular processes that combine a number of such 

individual pathways.   
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Functional relationships among all individual genes (orthologous groups) in the 

expanded COG database were inferred from their genomic neighborhoods in 

sequenced genomes.  Groups were then clustered into “operons” containing on 

average 4-5 genes.  These operons have been shown to correlate well with known 

metabolic pathways (23, 26).  Proteins were also grouped into higher order 

cellular processes, containing on average 15 genes, according to the manually 

curated KEGG database (27).  Predicted genes in the environmental samples were 

assigned to orthologous groups by sequence comparison and weighted according 

to their clone depth.  Profiles generated by binning the genes into orthologous 

groups, operons and cellular processes were then used to compare and cluster the 

samples.  The results of these analyses are displayed in Figures 3A-3C, each of 

which is a two-way clustering of samples and functional bins in which over- and 

under-represented categories are indicated by red and blue blocks respectively.  

Regardless of the functional binning employed, trees with roughly similar 

topology resulted.  A similar tree was also obtained when only 10 Mb of 

unassembled sequence from each community was included (Supplement).  Each 

sample had a unique profile, but, importantly, the independent Sargasso Sea 

samples clustered together in all of the trees, as did the whale fall samples.  Thus 

the predicted protein complement of a community is similar to that of other 

communities whose environments of origin pose similar metabolic challenges.  

These results support the hypothesis that the “functional” profile of a community 

is influenced by its environment and that EGT data can serve as a fingerprint for 

particular environments.   
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Figure 3: Functional profiling of microbial communities.  Two-way 

clustering of samples and encoded genes / functions based on relative 

enrichment of A) COGs, B) operons and C) KEGG functional processes.  In 

A) and B), only those categories with significant inter-sample variation are 

shown; all KEGG maps are shown in C with the 15 most discriminating 

processes highlighted.  Maps marked with an asterisk are xenobiotic 

degradation pathways whose apparent presence in the samples is likely 

indicative of more general degradative processes. 
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To assess the significance of these similarities and differences, and to identify 

functions of importance for communities existing in specific environments, we 

systematically examined the differences in gene content at four different levels of 

resolution; apart from the previously introduced COG, operon and KEGG map 

levels, we also included 23 broad functional categories representing on average 

170 COGs each into this analysis (Figure 4)(22). For this analysis, the three whale 

fall samples were pooled together, as were the three ocean samples.  At each 

level, significant differences among the respective microbial communities were 

observed that revealed environment-specific variations in both biochemistry and 

phylogeny.   
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At the individual gene level, quite a few orthologous groups are exclusive to a 

particular environment (Figure 4, upper left).  For example, 73 putative orthologs 

of cellobiose phosphorylase, involved in degradation of plant material, are found 

in soil but not a single one in the Sargasso Sea.  On the other hand, 466 distinct 

copies of the light-driven proton pump bacteriorhodopsin are found in the surface 

water, but not a single one in the deep sea or in soil.  Strikingly, there are several 

uncharacterized genes displaying equally extreme distributions across samples, 

e.g. 444 members of COG4338 in Sargasso Sea but none in the soil or whale fall 

data. 

The analysis of operons reveals similarities and differences in functional systems 

(Figure 4, upper right) that suggest features of the environments.  The most 

discriminating operons tend to be systems for the transport of ions and inorganic 

components, highlighting their importance for survival and adaptation.  With 

respect to ionic and osmotic homeostasis, for example, the two maritime 

environments are very similar – both show a strong enrichment in operons that 

contain transporters for organic osmolites and Na+ exporters coupled to oxidative 

phosphorylation.  Soil, on the other hand, has a strong enrichment in operons 

responsible for active K+-channeling including KDP-type channels, which are 

thought to use K+ to regulate intracellular osmolarity and turgor.  These biases 

nicely reflect the relative abundance of these ions in the respective environments; 

while typical ocean water contains considerably more sodium ions than 

potassium, the soil sample examined here contained high potassium and low 

sodium concentrations (Supplement).  In terms of available electron acceptors, 
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however, the deep sea whale falls share much in common with soil, including an 

enrichment of all three types of nitrate respiration processes (i.e. subunits of 

nitrous oxide reductase, nitrite oxide reductase, and nitrate oxide reductase). 

Apart from relatively obvious adaptations to the environment, we also observe 

community differences that are unexpected at first glance. For example, we 

observe a strong enrichment (e-value < 0.05) in the soil of a small operon recently 

shown to encode a prokaryotic double-strand break (DSB) repair system (Figure 

4, upper right)(28). This suggests that soil microbes may have a higher chance of 

suffering a DSB, or greater difficulty repairing it via recombinational repair, 

possibly because of factors such as larger genome sizes, slower growth, 

desiccation or attack from DSB-inducing genotoxins. 

Examination of the higher order processes reveals known differences in energy 

production (e.g. photosynthesis in the oligotrophic waters of the Sargasso Sea) 

(29) or population density and interspecies communication (overrepresentation of 

conjugation systems, plasmids, and antibiotic biosynthesis in soil; Figure 4, lower 

left) (12).  The broad functional COG categories, on the other hand, primarily 

suggest differences in genome size and phylogenetic composition.  Signal 

transduction genes, known to be more common in large genomes, are 

overrepresented in soil and whale falls while housekeeping functions like 

translation are overrepresented in the smaller genomes of Sargasso sea organisms 

(Figure 4, lower right)(30, 31).  The greater prevalence of RNA processing genes 

in the Sargasso Sea is indicative of a significant eukaryotic component in these 

samples (7). 
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Notably, many uncharacterized genes and processes are among the most 

significant overrepresentations in each sample.  This hints at an abundance of 

hitherto unknown functional systems, specific to each environment; they represent 

a rich source for further, more directed experimental and computational 

investigations (32).  Taken together, the analysis of genes and functional modules 

in environments reveals expected contrasts, hints at certain nutrition conditions, 

and points to novel genes and systems contributing to a particular “lifestyle” or 

environmental interactions. 

Figure 4: Specific Enrichments.  Three-way comparisons of soil, whale 

fall and Sargasso Sea environments, in terms of single genes (i.e. 

orthologous groups, COGs) or functional groupings of genes (operons, 

KEGG processes or COG functional categories). Each dot shows the 

relative abundance of an item in the three environmental samples, such 

that proximity to a vertex is proportional to the level of enrichment in the 

respective sample while items with unbiased occurrences are positioned in 

the middle.  Color indicates statistical significance of the enrichment, 

determined by comparison to randomized data. Items marked with [S] are 

indicative of differences in average genome size between the 

environments (see text).  
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These analyses demonstrate that whole genome assemblies of individual 

organisms from environmental communities are not required for an informed 

characterization of the biochemical potential of microbes present in a spectrum of 

ecological niches.  Rather, we were able to show that the predicted metaproteome, 
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obtained from fragmented sequence data, identified functional fingerprints which 

could be used to discriminate environments.  The reflection of known biochemical 

properties of these environments in the fingerprints suggests that this information 

may be predictive of environmental features of interest such as nutrient supply or 

pollution levels, while the environment-specific distribution of unknown 

orthologous groups and operons offers exciting avenues for further investigation.  

Just as the incomplete but information-dense data represented by expressed 

sequence tags (ESTs) have provided useful insights into various organisms and 

cell types, EGT-based ecogenomic surveys represent a practical and uniquely 

informative means for understanding microbial communities and their 

environments. 
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Supporting Online Material 

Methods 

Sample collection: 

Surface soil (0-10 cm) was collected in September 2001 from a farm in Waseca 

County, Minnesota.  The surrounding area had been used for livestock, including 

sheep, cattle, and pigs, and was in the drainage path of a silage storage bunker that 

had been used for sweet corn and pea silage waste operations from 1990 to 1997.  

The sample was collected and sealed in polyethylene bags and stored at 4 C for 

processing prior to archiving at -80 C.  Biochemical analysis (Wallace 

Laboratories) on 20 g of soil from the same site revealed it to be clay loam, with 

fair to low organic matter content and high levels of most essential elements.  

Potassium was present at 926.15 mg/kg dry weight and sodium at 75.38 mg/kg; 

levels of most nonessential elements were low.  Microscopic analysis, including 

Sybr green staining, found no evidence of eukaryotic cells in the sample and no 

normalization or fractionation methods were applied to enrich for a particular 

component of the community. 

Three independent whale fall sample libraries were examined.  “Whale fall 1” is a 

section of a rib bone from a gray whale carcass experimentally sunk in 1998 in 

the Pacific Ocean, Santa Cruz Basin (N33.30 W119.22), at a depth of 1674 meters 

(1).  “Whale fall 2” is an orange microbial mat from the same whale carcass; both 

samples were collected using a remote operated vehicle (ROV).  “Whale fall 3” is 

a whale bone of uncertain age and species collected by otter trawl on a muddy 
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seafloor at a depth of 560 meters off the West Antarctic Peninsula Shelf (S65.10 

W64.47).   

Library construction: 

DNA for all libraries was isolated as described (2).  For analysis of small 

ribosomal RNA sequences, three sets of primers were used to individually target 

bacterial (27F and 1392R), archaeal (21f and 958r) and eukaryotic (forward 

primer: 5'-ACCTGGTTGATCCTGCCAG-3', reverse primer: 5'-

TGATCCTTCYGCAGGTTCAC-3') genomes.  Products were then cloned into 

the pCR4-Topo vector (Invitrogen). 

For soil genomic sequencing, community DNA from 0.5 g material was cut with 

6-base recognition site restriction enzymes and cloned into the lambda ZAP 

Express vector (Stratagene).  The library was amplified once then in vivo excised 

to form a pBK-CMV phagemid library according to manufacturer’s protocol.  

Average insert size was determined to be 2.4 kb by gel electrophoresis.  All three 

whale fall libraries were made from mechanically sheared community DNA 

cloned into the lambda ZAP Express vector, then in vivo excised, without 

amplification, to form a pBK-CMV phagemid library.  Average insert sizes were 

3.3 – 3.5 kb.   

Clones for all libraries were picked and bidirectionally sequenced by standard 

protocols (http://www.jgi.doe.gov/). 

16S/18S rRNA sequence analysis: 
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Paired reads from 16S and 18S rRNA clones were assembled using phrap; 18S 

clones with two successful sequencing reads that failed to assemble were 

manually assembled with Ns filling the central gap.  Chimeric sequences were 

identified by the Bellerophon program (3) and removed from further analysis.  

However, any sequences that appeared in both independent bacterial PCR 

libraries from soil were flagged as non-chimeric and retained.  Species 

abundances were determined by a Perl script that utilized single-linkage clustering 

to group together any sequences with >97% identity over the full length of the 

insert.  Accumulation curves and total species estimates were generated using 

EstimateS (Version 7, R. K. Colwell, http://purl.oclc.org/estimates).  For 

phylogenetic assignment, all bacterial and archaeal sequences were blasted 

against an internal ARB database of curated 16S rRNA sequences; any sequences 

without hits of >95% identity, as well as all eukaryotic 18S rRNA sequences, 

were blasted against the NR database.  Sequences with >95% identity to a 

database sequence were assigned to the same phylum.  For clusters that remained 

unassigned, a representative member was phylogenetically classified by 

incorporation into the ARB database tree.  Singlets that could not be 

automatically assigned to a phylum remained unclassified. 

Genomic sequence analysis: 

Prior to annotation, low-quality and duplicate sequencing reads were removed 

from the soil sequence.  Among the original set of 198529 reads, 8164 had fewer 

than 200 bases with phred score >20 and were therefore removed as being 

unlikely to contribute useful information.  The remaining reads were then scanned 
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for duplicate clones resulting from the amplification step in the library 

preparation.  41,280 reads were defined as duplicates and removed, using the 

criteria that any reads that matched each other with >95% identity over at least 

400 bp or 90% of the insert length, and had the same insert orientation, were 

considered duplicates.  When pairs of duplicates were found, the read with fewer 

high-quality bases was deleted from the data set.  The remaining 149085 reads 

were subjected to phrap assembly, to identify overlapping reads from independent 

clones, and functional annotation for EGT analysis. 

Metagenome size calculations: 

To calculate the amount of metagenomic sequence needed to assemble the 

genome of the most common species in soil, we estimate based on the 16S rRNA 

data that this species represents roughly 5% of the library.  Assuming an average 

genome size of 6 Mb (4-6), and a desired coverage level of 8X, we would need to 

sequence 48 Mb of DNA from this organism.  Accordingly, nearly a gigabase of 

sequence from this community would be necessary.  However, significantly more 

could be needed if the 5% representation of this clone is inflated by preferential 

PCR amplification:  if the ~3000 taxa were present in equal abundance, >150 Gb 

could be required.   

To estimate the sequence coverage based on the assembly statistics from soil, we 

considered two extremes, in which either one species dominates or all species are 

present in equal abundance.  In total, 744 contigs were identified in the phrap 

assembly that contained reads from at least two independent clones and were 

longer than 850 kb.  Within these contigs, roughly 0.3 Mb of sequence were 
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covered more than once.  We first assumed that these overlapping sequences all 

derived from the same 6 Mb genome.  The Lander-Waterman equation indicates 

that the number of bases covered more than twice will be equal to G * (1 - e^(-c) 

– ce^(-c)), for coverage c of a genome (or metagenome) of size G.  Solving this 

equation, we estimate that the most abundant genome is covered at a depth of 

about 0.35 in our data, so achieving the 8X coverage desired for assembly would 

therefore require more than 2 Gb additional sequence.  On the other extreme, if 

we assume that all species are present in equal abundance, the same equation 

predicts a total “metagenome” size of 16.7 Gb (~2800 individual genomes of 6 

Mb) and implies that more than 130 Gb of sequence would be required for 

genome assembly.  Thus both the 16S rRNA data and the assembly statistics 

independently project the need for an amount of sequence on the order of one to a 

hundred gigabases in order to assemble one or more prokaryotic genomes from 

the soil community.   

Whale fall “metagenome size” estimates were calculated by determining the 

coverage of each base sequenced and fitting the resulting histogram.  Assuming 

an average genome size of 6 Mb and a desired coverage of 8X, the amount of 

sequence necessary to assemble the three most abundant genomes (roughly 50% 

of the community) in whale falls 1, 2 and 3 respectively are:  257 – 520 Mb, 270 – 

698 Mb, and 240 – 486 Mb.  Achieving sufficient coverage of all genomes 

present at an abundance of at least 2% in any sample would require 2.4 Gb of 

sequence. 

Functional annotation: 
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All genomic sequences were analyzed by the program FGENESB from Softberry, 

which predicts genes and operons as well as functional RNAs (described at 

http://www.softberry.com).  Functional annotation of the predicted proteins 

utilized an extended version of the COGs database, covering 26201 protein 

families (orthologous groups) in 179 completely sequenced organisms as 

compared to 10740 orthologous groups in 73 organisms found in the current 

COGs database (7). The extension has been performed using an unsupervised 

procedure in the context of the STRING project (8).  As a result of the extension, 

additional members have been added to existing COGs, and novel orthologous 

groups have been created which are termed “non-supervised orthologous groups” 

(NOGs). The procedures used for extending the database were very similar to the 

original COGs procedures (including a ‘COGNITOR’-type protocol for extension 

of existing COGs, and full all-against-all similarity searches to define novel 

groups as triangles of reciprocal best hits; see the last chapter of the STRING 

documentation for details: http://string.embl.de/). The extended COGs used here 

are those of STRING version 6; they are transitional in that they will be replaced 

when updated versions of the original COGs database are released. 

 

Predicted proteins from all environments, including those from unassembled reads 

and those annotated as ‘miscellaneous feature’ in the Sargasso Sea data, were 

compared to this extended COG database using BLASTP. Predicted proteins were 

assigned to one of the orthologous groups if they showed a similarity score of 60 

bits or better to any of the proteins in that group. BLASTP was run using the 
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BLOSUM62 matrix and low-complexity filtering disabled (under these settings, 

60 bits corresponds to an e-value of roughly 10-8 in searches against nrdb). As is 

the case in the original COGs database, a protein was allowed to map to several 

orthologous groups, provided all of these were detected above the 60 bits cutoff 

and overlapped by no more than 50% of the shortest assignment. 

 

Two-way clustering analysis 

 

To investigate whether independent samples taken from related environments 

show a similar functional profile in terms of encoded proteins, a two-dimensional 

cluster analysis was performed - akin to the clustering of microarray data (9). 

A two-dimensional matrix was constructed of environmental samples and 

orthologous groups, wherein each cell indicates how often genes of a particular 

orthologous group were seen within a particular environmental sample. To 

achieve optimal sensitivity and specificity, this was done based on assembled data 

wherever possible, correcting for the read-depth of the assembled contigs (a 

contig with a high read-depth is more frequently represented within the sample 

and correspondingly receives a higher count). Corrections for mated reads and 

contig sizes were also performed: mated reads do not constitute independent 

observations, and large contigs are clearly covered by more reads than short 

contigs. Thus, final counts were expressed as number of independent clones per 

1000 base pairs of assembly, and those final counts were equally applied to all 

orthologous groups found within a contig. In a last step, we added to those final 
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counts a small amount of pseudocounts, in order to suppress meaningless 

statistical fluctuations caused by very rare orthologous groups (the amount of 

pseudocounts added to each cell was the sum of all cells of that environment, 

divided by 10000). 

 

At this point, the matrix was normalized to account for the varying amounts of 

sequence acquired for each environmental sample, and for the varying overall 

frequency of orthologous groups. Normalization of the rows to unity (i.e. the 

environments) corrected for sequencing depth, and a subsequent normalization of 

columns to unity corrected for the overall frequency of orthologous groups (some 

groups such as unspecific methylases or dehydrogenases are generally very 

frequent in microbial genomes, and would dominate over less-frequent, but more 

specific groups without this last normalization). The matrix was then clustered 

independently in each dimension, using UPGMA clustering of Euclidian distances 

(PHYLIP package). Figure 3A of the main text shows the final matrix, rearranged 

according to the result of the clustering - whereby cells in the matrix are colored 

to indicate whether the orthologous group in that particular environment is seen 

more often than expected, or less often (colors represent log-ratios, i.e. 

observation divided by the unbiased expectation: two-fold overrepresentation is 

shown in full red, two-fold underrepresentation is shown in full blue, white color 

means observation is as expected). The matrix shown is truncated after 600 

orthologous groups due to space constraints, but the clustering of samples is based 
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on all available groups. The 600 groups shown are those with the overall largest 

deviation from the expectation (i.e. the product of their matrix cells is minimal). 

The above analysis was repeated for functionally binned genes (as opposed to 

single genes), in order to assess whether the resulting tree of environmental 

samples was robust, and to assess which functional systems differed most 

between samples. Grouping of genes was performed at two levels: at the level of 

operons (averaging 4.5 genes per operon), and at the level of the functional 

process (as defined in the KEGG database (10), averaging 15 genes per process 

and species).  

 

Not all bacterial operons are known, but a comprehensive list of presumed 

operons can be constructed by searching for repeatedly occurring gene 

neighborhoods in fully sequenced prokaryotic genomes. We have previously 

executed such a search (11) and have extended it here to cover 179 fully 

sequenced genomes. In short, all orthologous groups in all genomes were assayed 

for neighboring occurrences or instances where two groups mapped to the same 

ORF (gene fusions). The resulting links between orthologous groups were scored 

according to frequency and specificity of the interaction, and then clustered to 

reveal entire operons. The procedure and cutoff applied here were essentially 

identical to those used previously (11), except that neighborhood and fusion were 

considered but not the phylogenetic co-occurrence of genes across species. The 

resulting set of conserved operons consisted of 565 operons of at least three 

orthologous groups each. Of those, 394 operons were found within at least one of 
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the environments. Note that this does not require the presence of multiple genes 

on a single contig – what is counted are still the individual orthologous groups (as 

in the above paragraph), but these are subsequently grouped according to their 

membership in known operons. Construction of the two-dimensional matrix and 

clustering were done as described above; pseudocounts were 1 in 10000, and full 

color is shown for enrichments of 1.5-fold or higher. 

 

For the two-way clustering according to KEGG processes, the predicted 

environmental proteins were directly compared to proteins in the KEGG database 

(bypassing the COG-assignment). This was again done using BLASTP at a cutoff 

of 60 bits, but each environmental protein was mapped to at most one protein in 

the KEGG database. The two-dimensional matrix was then constructed using 

entire KEGG-processes, each grouping the counts for several proteins. Filling and 

clustering of the matrix were done as above; pseudo-counts were 1 in 2000 

(reflecting the larger size of KEGG processes), and full color was shown for 

enrichments of 1.3-fold or higher. 

 

Specific enrichments (three way comparisons) 

 

Having established that similar environmental samples can be grouped together 

based on their gene content, the next task was to assess which genes were 

particularly enriched in each of the environments (hinting at functional 

differences between the microbial communities). For this analysis, the three whale 
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fall samples were pooled as one environment, as were the three Sargasso Sea 

samples #2, #3 and #4. The acid mine drainage sample was not considered here, 

because it is the least diverse sample and because it is from a relatively recent, 

man-made environment.  Samples 2-4 from the Sargasso Sea were chosen 

because they were independent samples utilizing identical sampling procedures.  

A triangular representation was chosen to display the specific enrichments of 

genes or functional processes in each of the environments (Figure 4, main text). 

Assessing the relative counts of orthologous groups, operons or KEGG processes 

was done exactly as described in the previous section (two-way clustering 

analysis). Additionally, as a fourth binning the assignment of orthologous groups 

to broad functional categories was used (categories were as defined in the COG 

database).  

 

For each item, one dot is shown within a triangle – the position of the dot signifies 

the relative enrichment of the item in one or several of the samples. Items that are 

equally frequent in all three environments appear in the middle of the triangle. 

Items that appear in one of the corners of the triangle are found primarily in one 

of the environments, and items that appear along one of the edges of the triangle 

are found primarily in two of the three samples, but are largely absent from the 

third. For each item, the relative counts for the three environments were 

normalized to add up to 1 (after addition of pseudocounts to select against rare 

items). This permitted the display of three-dimensional data in two dimensions 

(using three axes at 120 degree angles). In order to estimate the statistical 
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significance of each observation, the data were compared to randomized data, as 

follows. 

 

First, the actual items were binned into abundance classes. An observed relative 

enrichment is statistically more significant for an abundant item (e.g. a 

widespread orthologous group or a large operon) than for a rare item. Comparison 

of items to randomized data was done separately for each abundance class. 

Randomization was done by repeated sampling of items from reservoirs matching 

the size distributions of the three environmental samples. For each random 

sampling, the addition of pseudocounts and normalization were done in exactly 

the same way as for the actual data, and the position of the random dot in the 

triangle was noted. After at least 2·106 randomizations in each abundance class, 

the density of random dots in the triangle was assessed, on a grid spanning 20 bins 

on each axis (i.e. 20 * 20 * 20 = 8000 gridpoints). This allowed the computation 

of p-values for each of the actual items, by checking the density of random dots at 

the position of the item: the p-value corresponded to the number of random dots 

in bins of equal or lower density, divided by the total number of randomizations. 

E-values were then computed by multiplying the p-values with the total number 

of items under consideration. For each of the triangles, dot positions and e-values 

of all items are available as flat files on request.  

 

Supplemental Data 

16S / 18S ribosomal RNA analyses 
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The bacterial 16S rRNA sequences from soil (1700 total) clustered into 847 

unique groups mapping to 18 different phyla.  Most of these sequences were 

singlets, and the largest cluster contained just 112 clones, or 6.6% of the total 

(Supplementary Figure 1A).  The 58 archaeal clones formed just seven clusters, 

all within two major euryarchaeal branches (Supplementary Figure 1B), and the 

106 eukaryotic 18S sequences analyzed fell into 35 distinct groups in at least 8 

different phyla, primarily fungi and unicellular eukaryotes.  33 partial 16S rRNA 

sequences were found in the soil genomic data, representing 31 distinct bacteria, 

one archaeon and one chloroplast; one eukaryotic 18S sequence was also found. 

 

Supplemental Figure S1:  rRNA analysis of soil.  A) Rank-abundance curve for 

bacterial 16S rRNA sequences.  B) Phylogenetic distribution of soil 16S rRNA 

sequences from PCR clone library (solid) and genomic library (hatched).  C and 

D) Allocation of C) archaeal 16S and D) eukaryotic 18S rRNA sequences into 

phyla. 
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Crenarchaeota

Euryarchaeota:
Methanomicrobia
Unknown
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Fungi
Alveolata
Cercozoa
stramenopiles
Viridiplantae
Lobosea
Pelobiontida
Metazoa
Plasmodiophorida
Unclassified
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Each whale fall bacterial 16S library contained 17-37 unique sequences mapping 

primarily to the Proteobacteria and Bacteroidetes.  In contrast to soil, more than 

half of the sequences were distributed among the top few clusters (Supplementary 

15 



Figure 2A).  The archaeal 16S sequences from the two Pacific samples fell into a 

limited number of clusters, primarily within the Methanomicrobia and, for the mat 

sample, the C1 archaea.  The eukaryotic 18S sequences from the mat sample were 

all from the same deeply branching eukaryote while those from the bone derived 

mainly from two alveolates; singlet representatives of a cercozoan and a fungus 

were also found in this library.  We found partial 16S rRNA sequences in 74, 36 

and 64 clones from the three whale fall libraries respectively, all of which were 

bacterial.  Comparing these to the sequences found in the PCR clone libraries 

revealed that for each sample, the same phyla (and proteobacterial classes) were 

typically represented in the two types of libraries (Supplementary Figure 2D). 

 

Supplemental Figure S2:  Rank-abundance curves for whale fall bacterial 

16S sequences.  A) Whale fall 1, Santa Cruz bone; B) Whale fall 2, Santa 

Cruz microbial mat; C) Whale fall 3, Antarctic bone. D) Assignment of 

16S rRNA sequences to bacterial phyla for both PCR clone libraries (solid 

bars) and genomic libraries (hatched bars). 
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Comparison of assembled acid mine drainage biofilm genomes with unassembled 

reads: 

Automated annotation was applied to the assembled genomic scaffolds from the 

acid mine drainage biofilm as well as to all unassembled reads from the same 

sample.  In the five genome “bins” assembled from the acid mine drainage 

sequence data, a total of 7173 distinct proteins were predicted in 1629 different 

COG categories.  In the complete set of unassembled reads, 77685 proteins were 

predicted in 1824 different COG categories (of 144771 total predicted ORFs), 

including all but 8 of the categories predicted in the assembled genomes.  203 

additional COGs were predicted in the unassembled data that were not predicted 

in the assembled genomes, of which slightly more than half (107) were predicted 

in reads that were discarded because they did not form large contigs.  More 

stringent methods for assigning proteins to COGs, such as requiring multiple hits 

to the same category in different organisms, did not substantially change the 

number of apparent false positives or false negatives. 

 

Supplemental Figure S3:  Functional accumulation curves for all samples.  

Number of unique hits in the A) COG and B) Pfam database as a functional 

of sequence depth.  The y-axis maximum is set to the total number of 

categories in each database. 

A) 

20 



0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 50 100 150 200 250

Megabases sequenced

C
O

G
s 

ob
se

rv
ed

Soil
AMD
Whale fall 1
Whale fall 2
Whale fall 3
Sargasso 2
Sargasso 3
Sargasso 4

 

B) 

0

1000

2000

3000

4000

5000

6000

7000

0 50 100 150

Sequence (Mb)

Pf
am

 d
om

ai
ns

 o
bs

er
ve

d

Soil
Whale fall 1
Whale fall 2
Whale fall 3
AMD

 

Supplemental Figure S4:  Sample tree based on 10 Mb of unassembled sequence 

from each sample.  Total hits to each of 4873 COGs were taken as components of 

a COG vector; Euclidean distances were calculated among the vectors to create a 

distance matrix.  Tree was generated using Phylip (University of Washington, 

http://evolution.genetics.washington.edu/phylip.html) and visualized with 

21 

http://evolution.genetics.washington.edu/phylip.html


Phylodendron (University of Indiana, 

http://www.es.embnet.org/Doc/phylodendron/treeprint-form.html). 
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